RFID is a technology that dramatically alters an organization’s ability to acquire accurate, timely data pertaining to product information, volume, and its orientation within an inter-organizational B2B supply network. In an attempt to maintain organizational competitiveness while improving logistics internally as well as with external alliances, it is imperative that a firm consider the beneficial aspects of this technology that will improve process performance while addressing its limitations to adoption and implementation. The objectives of this paper are to explore the advantages of RFID, its impact on various business processes influencing B2B supply network, and the limitations of this technology.

Introduction

Organizations are utilizing modern information systems (IS) to acquire, interpret, retain, and distribute information. Innovations in information technology are focused upon improving the cost-performance capabilities of organizations (Curtin *et al.*, 2007). Advances in technology based real-time information gathering and decision support systems promote real-time decision making that allow firms to elevate operational performance, especially in logistics and supply chain management.

Radio frequency Identification (RFID) is a technology that dramatically changes the capabilities of the organization to acquire a vast array of data about the location and properties of any entity that can be physically tagged and wirelessly scanned within certain technical limitations (Coltman *et al.*, 2008). RFID allows any tagged entity to become a mobile, communicating component of the organization’s overall information infrastructure. In B2B supply networks RFID provides boundless potential in improving effectiveness, efficiency, and tracking inventory much more accurately in real-time reducing processing time and required labor. The consummate visibility of authentic inventory data throughout the supply network enables contingencies for advancements and transformation within the assorted business processes involved.

This paper explores the processes in B2B commerce which are affected by RFID and discusses the benefits of this technology in a B2B supply network, in creating business value, and contributing in increasing the efficiency and effectiveness of selected business processes. The next section begins with a concise overview of the literature, followed by a technical background of RFID. The benefits of RFID are discussed, followed by the conceptual framework which depicts how RFID influences the various processes in an inter-organizational supply network. Finally, the limitations of RFID are discussed followed by conclusion.
Literature Review

Logistics management has become vital in providing unique competitive advantage in the global market, and effective supply chain management makes logistics function more efficient in the supply chain (Lin, 2008). Shih *et al.*, (2008) in their study found the critical reasons for the increase in the adoption of RFID technology in Taiwan which are - operation efficiency, manufacturing efficiency and supply chain efficiency. The adoption of RFID lowers operating costs, increases revenue, reduces inventory capital cost, lowers overhead costs, and reduces lead time (Veeramani *et al.*, 2008). Wal-Mart was one of the first few corporations to mandate RFID tags. They used the “slap and ship” approach in the beginning because it was not clear how to assess the impact of a broader deployment of RFID across their operations.

RFID is a new technology and is far from mass adoption. Researchers are exploring the pros and cons of investment in this new technology. Jeong and Lu (2008) explore the impact of RFID investment in terms of shareholder wealth, and the actual market value of the firm, concluding that it does possess the potential to generate cost savings and enhance performance. However, they do suggest that it is an immature technology that is associated with uncertainty and risk. Dutta *et al.*, (2007) studied the prospects of extracting business value from adopting RFID. They examined three dimensions of the value proposition of RFID. The first dimension consists of the generic architecture of RFID implementations and the drivers of the value that can result from its components. The components of this dimension are RFID tags, readers, edgeware, and enterprise systems. The edgeware level carries out some basic filtering, aggregation, and processing operations on the raw tag data collected by the readers. Enterprise systems are integrated software applications that support different business processes such as operations, marketing, finance, logistics, and human resources. The second dimension consists of measurement issues associated with the quantification of value, and the third dimension addresses incentives for measuring RFID value including: Labor cost savings, shrinkage reduction, and higher inventory visibility.

Major retailers have started giving mandates to their suppliers to start tagging products for delivery to their retail outlets; the use of such mandates seems to imply a dominant position of the retailers over their suppliers. Soon and Gutiérrez (2008) in their study investigates the power shift within the supply chain, and the benefits of upstream/downstream localities of the supply chain. They establish the three-tier effects of the RFID mandate on two differential classes of suppliers; organizations with the mandates to implement RFID in order to continue business with retailers, and organizations not affected by the mandates and that are either adopting the “wait-and-see” tactic or planning to adopt the technology. The first tier is the immediate adoption of RFID to comply with the mandates. The second tier is managerial contemplation on the operational and tactical issues of sustaining the integrated technology and the third tier is post RFID challenge; changes in the current system may introduce new shifts that could disrupt existing business processes.

One of the benefits of having efficient supply chain management is to enable the synchronization and sharing of valuable information among trading partners. The success of a supply chain system depends on the level of visibility it has on the materials from the suppliers to the customers (Delen, *et al.*, 2007). By adopting RFID, the information at different organizational levels and types can be distributed in real time, eliminating the delay in information sharing. The information visibility is critical to supply chain operations and presents three avenues for potential business value; the immediate reaction to data collected in real-time with no process changes required, making incremental changes to the business processes, and the enablement of new processes (Delen *et al.*, 2007). RFID can also be applied to a variety of tasks, structures, work systems and contexts along the value chain, including business-to-business logistics, internal operations, business-to-customer marketing, and after sales service applications (Curtin, *et al.*, 2007).
Technical Background

Radio frequency identification is a wireless tracking technology that allows a reader to activate a transponder on a radio frequency tag attached to, or embedded in, an item, allowing the reader to remotely read and/or write data to the RFID tag (Curtin et al., 2007). RFID is considered advantageous over traditional bar-coding methodologies because it is not constrained by “line-of-sight” and multiple tags can be read simultaneously by available readers in the vicinity. The origin of this technology goes back to its military applications during the Second World War, when British Air Force used this technology to distinguish allied aircrafts from that of enemy aircraft with radar (Asif and Mandviwalla, 2005).

The structural rudiment of this technology can be broken down into the tag, the reader, and surrounding computing technologies. RFID tags are the chips that are embedded in the product, pallet, or case that store and transmit information about the specific item it is attached to. Tags are made of a hard copper coil consisting of an integrated circuit attached to an antenna then packaged into a housing device appropriate for the application (Delen et al., 2007). Data is stored on the integrated circuit and transmitted through the antenna to the reader by either a passive or active tag. Passive tags are generally more popular, less expensive, with a virtually unlimited lifespan. They use radiated energy from an electromagnetic field that RFID readers generate to transmit information, and will only remain energized while it is within the reader’s field of range. Active tags are self powered by a battery and act as a miniature computer and transmitter that receives, stores, and transmits information to the reader about a product. Active tags life span is limited; however the tags do have a longer read range, better accuracy, more complex rewritable information storage, and richer processing capabilities (Moradpour and Bhuptani, 2005). Readers are transmitters and receivers governed by a microprocessor or digital signal processor that communicates with the tags within its field. They use a manufactured antenna to seize data from the tags passing the data to a computer for processing. These readers can have an effective range from anywhere to a few inches to a many meters depending on the frequency and type of tag being used. Data collected from the tags by the reader is then passed through wireless transference to host computing technologies for interpretation, storage, and action by the organization utilizing RFID technology.

Benefits of RFID

There are many benefits of RFID that are driving motivational factors in influencing organizations’ to adopt this technology. Industry reports have claimed that the value of RFID technology is embedded in the ability to enable higher visibility to the supply chain. Success of the supply chain system is dependent upon the level of visibility it has on materials from suppliers to consumers. Such information visibility is advantageous in inventory management and asset utilization. With the implementation of RFID, all information at different organizational levels can be distributed in real-time, eliminating any delay in the acquisition of desired information required by a user within the firm. This capability is directly influential in aiding management and their real-time decision making abilities, with instant accessible information across the organization.

RFID technology essentially aids organizations reduce operating costs by decreasing labor costs, returns, and shrinkage, which in turn increases actual operational income. Working capital can be moderated by enabling reductions in inventory and lowering inventory write offs from unsalable products and returns. Multiple tags can be read simultaneously without manually scanned the objects one by one, and without manipulating the objects to achieve line of sight, there could be significant labor savings in
the receiving operations or inventory audits at warehouses or stores (Dutta et al., 2007). Shrinkage can be classified as theft, damages, spoilage, or mistakes in the replenishment process. With the use of RFID, the accurate recording of inventory by quantity and location could result in less opportunity for mistakes, or spoilage.

RFID introduced into a firm’s supply chain can be advantageous to the specific processes in the chain in a unique way. As mentioned earlier, increased information visibility will dramatically improve the efficiency and effectiveness of any activity along the supply chain. Such activities could include the acquisition of timely data about the market demand for a particular product aiding the development of production, distribution, and marketing strategies; determining exact localities of a product and tracking its movement through the supply chain in order to generate routing decisions for future or existing importance; increasing product velocity and efficiency at the manufacturing level.

Announcement of investment in RFID boosts the confidence of investors and stakeholders. It shows the emphasis of the organization in generating high profit streams as well as their focus upon achieving operational competencies by leveraging new technologies (Jeon and Lu, 2008). Investment in RFID also exemplifies the organization’s commitment in constructing resources and capabilities for new and existing business processes, as well as capitalization of IT innovations which favorably places firms in a position to utilize opportunities which actualize future benefits. An organization announcing adoption of RFID expects to improve the governance of organizational processes due to enhanced inter-organizational integration and information sharing; this improvement should be directly reflected in a firm’s value (Jeong and Lu, 2008).

Benefits of RFID in B2B Commerce

The interplay between RFID and buyer-seller (B2B) relationships in an inter-organizational supply network is an intricate phenomenon. This section discusses the potential impact of RFID technology on processes involved in B2B commerce, which are wireless exchange of operational and financial data intra- or inter-organizationally, within a supply network. Organizations have inbounded and outbound logistics arrangements with external alliance partners, an application area where RFID systems can create unique value (Curtin et al., 2007)). There are palisades to the realization of the potential value from applying RFID to the processes involved in a B2B structural setting. Organizations have learned that implementation of RFID in business process redesign (BPR) improves efficiency and effectiveness of the processes that exist within and across the organization. It also modifies or eliminates non-value adding activities resulting in maximization of profits.

The benefits of RFID can be fully realized in a B2B context when it is adopted by all the trading partners. Mandated adoption allows only larger buyers such as Wal-Mart to force its suppliers to implement and adopt the technology. Owner ship of equipment and data, combined with the equitable distribution of technological benefits further complicate the inter-organizational adoption of RFID. Some of the key drivers of the complexity of RFID adoption under these circumstances involve non-contractible elements of technology investment; the negotiation of post-investment value sharing, uncertainties associated with the technology becoming a recognized standard, difficulties in the transmission of information about the business value of the technology in its structural setting, and the co-ordination of adoption involving different kinds of organizational participants (Curtin et al., 2007). B2B organizational relationships can often reach international boundaries, necessitating international technological standardization and collaboration. One of the main problems with RFID technology in B2B commerce on a global scale is the integration of an accepted frequency. There are also other factors contributing to the success of the organizations involved in a B2B supply network. Access to shared information is at the base of an RFID initiative. The information related to a specific product is shared among trading partners
as the product travels downstream (Boek et al., 2007) through the supply network. Information can also be made available to travel inversely, or upstream. The desire to make a shared RFID project successful clearly necessitates a deep desire for cooperation from all members of the supply network; once the technological infrastructure is in place, it should also facilitate initiatives, thereby enabling the supply network participants to work as a more collaborative team.

An RFID system has the potential to reduce a major part of the shrinkage that caused a lack of trust among inter-organizational businesses. By acting as a constant verification system, it provides accountability for quality and volumes of shipments (Boek et al., 2007). Shrinkage will eventually tend to diminish, making trading partners more trustworthy from a business perspective. Implementing the RFID system will initially necessitate a considerable investment. A portion of this investment therefore represents sunk costs that will not be recovered should the relationship in a B2B network end. By investing in the system, these companies expect the relationship to last. Additionally, once RFID is implemented, the relationship should be more profitable for all parties involved. The natural tendency would be to build on the relationship as long as possible in order to recoup the initial investments and increase profit margins.

Conceptual Framework

RFID technology does not itself bring benefits; it is in the interaction with business processes that benefits are attained by the B2B supply network. An organization can easily be blinded by the functionalities and the extensive opportunities offered by RFID technology, causing one to focus on the technology and overlook the business processes (Hellstrom, 2008). Adopting RFID without understanding how it influences the business processes may end up in getting limited or no benefits. IT should be viewed as more than automation or a mechanizing force, since it fundamentally reshapes the way business is carried out. Therefore the impact of RFID should be analyzed in terms of how it influences various business processes in B2B supply network (Figure 1).

Inventory Management

Innovative RFID tags can dramatically reduce system-wide inventory, transportation and warehouse costs, and stock-out problems for retailers. The most obvious use of RFID is as an automatic version of bar code scanning. As a more sophisticated automation device, RFID provides advantages of eliminating delays in recording inventory movements, reducing labor, improving the accuracy of inventory records, having larger data capacity for additional information such as selling price, and being able to detect or count inventory at any time at little or no marginal cost (Lee et al., 2008). In summation, RFID provides greater automation in manufacturing processes and reduces stock holding due to quick response capabilities. RFID can significantly increase the amount of product handled daily and improve warehouse efficiency by more reliable information on the movements of the physical loads. RFID technology is viewed as a means to enable non-contact transmission of product information such as price, manufacturer, expiration date and weight via frequency, reducing both inventory losses and labor costs (Blau, 2005). It is possible that RFID is more likely to increase the speed of product replenishment for better inventory planning, reduced levels, prevention of stock-outs and cost savings. Wal-Mart has conducted a study that enforces RFID’s role in improving inventory accuracy at a retail level. The premise of this study was centralized on examining the store-level influence of RFID on perpetual inventory; an inventory management system’s continuously updated calculation of on-hand inventory (Bacheldor, 2008). The research was conducted by the RFID Research Center, and included 8 Wal-mart stores as a control group, while focusing on only one product category: air fresheners. The study concluded that RFID reduced the degree of traditional recording PI inaccuracies by 13%, and that implementing the technology increased efficiency and labor costs as counting the vast array of such a
diverse product line daily was not feasible to Wal-Mart.

Figure 1

Business Processes Influencing B2B Supply Network

Proposition 1: RFID technology introduced into Inventory management offers benefits related to automation, accuracy of inventory data, shelf inventory replenishment, physical inventory visibility, and zero time delay of inventory data.

Demand Management

Retail supply chains are becoming increasingly geared toward a high-speed, frequent-delivery model employing RFID and collaborative planning (Kim et al., 2008). The demand management process is focused on determining how demand can be synchronized with the capabilities of the supply network. It includes forecasting, synchronizing, reducing demand variability, increasing supply chain flexibility, and developing contingency management plans for potential interruptions to supply or unexpected
changes in demand (Lambert et al., 2008). Difficulties experienced within the demand planning domain are due to the lack of reliable accurate data; the acquisition of RFID would generate authentic information related to the inventory of finalized products. SkyeTek, Inc., the leading provider of embedded RFID solutions, today announced that Seeonic, a leading innovator in smart-shelf technology, is leveraging SkyeTek's software and embedded RFID readers in their disposable smart-displays in order to provide real-time inventory tracking of promotional items (SkyTek Inc., 2007). With little visibility on the actual sales floor, existing systems and processes are not accurate or timely enough to provide the manufacturer or distributor with the intelligent data they need to anticipate stock-outs and protect sales for specialty or promotional products. Seeonic is solving this problem with the help of SkyeTek by adding RFID functionality to their glass smart shelf display system; by leveraging SkyeAPI and the M9 UHF module, a real-time Demand Management and inventory replenishment forecasting service is put into place using an RFID enabled smart display which monitors and reports the inventory levels of displayed items (SkyTek Inc., 2007). Not all variability in demand is caused by the customers/consumers (Lambert et al., 2008); in many cases it is caused by the policies and procedures of members of the supply network. Data attained from RFID will terminate inaccuracies in data due to human error or if the data is insufficient. Consumer demand for lower pricing and higher quality products are driving forces for organizations to accomplish supply chain effectiveness and efficiency in a B2B context. Timely data about the market demand for a particular product or service would aid in the development of more successful strategies for production, marketing, and distribution. This strategic forecasting provides the information for matching consumer demand with product supply in the form of aggregate planning; which can be enhanced by accurate data using RFID, avoiding costly buffer stocks. Buffer stocks are supplies of a product held by a country or an international organization to moderate fluctuations in the price of some commodity.

Proposition 2: The implementation of RFID allows organizational data to be provided accurately and timely, allowing suppliers and retailers in a B2B network to rapidly respond to unpredictable demand conditions, stock-outs, and urgent delivery items.

Returns Management

The Returns Management process includes the implementation of avoidance, gatekeeping and development of disposition guidelines; avoidance refers to analyzing returns, determining the root-causes and implementing programs that minimize the number of return requests (Lambert et al., 2008). Gatekeeping is the screening of the return request and the returned product at the earliest point in the reverse flow. There are multiple disposition options including recycling, remanufacturing, refurbishing and sending the product to a landfill (Lambert et al., 2008); disposition options need to be carefully evaluated as product flow and destination locality must be accelerated to minimize the lost value in the reverse flow. Product recall and defective product return, or reverse logistics, is an important part of all supply chain operations, and can be tracked back effectively by implementing RFID in the return process. RFID technology can also expedite return management by assisting retailers recognize if they actually sold the product being returned through Smart Electronic Security Markers; a unique data code that by itself or in conjunction with a network, can distinguish the product as genuine. These markers tie relationships of a product to a sale and then to a return. Manufacturers would definitely benefit from the elimination of counterfeit products being returned to retailers by placing item-level tags on high end products or constituents of products.

Proposition 3: The implementation of RFID in the Returns Management process ensures product authenticity, providing evidence through Smart Electronic Security Markers confirming that the product was purchased from the particular supplier.
Order Fulfillment

Order fulfillment involves generating, filling and delivering customer orders. A key activity of the order fulfillment process is to gain an understanding of the current and future capabilities and constraints (Lambert et al., 2008) in the supply network. Logistics managers know the capabilities of the network and how they affect the order fulfillment process, including lead-times, packaging restrictions, and existing economies of scale. If the capabilities do not match the requirements, a network design project is constructed to determine what changes need to be implemented (Lambert et al., 2008). Technology such as RFID can be used to streamline the order fulfillment process and enable better communication flow between functions and between firms involved in the supply network. The ability to meet customer requirements is a key process to improving the effectiveness of a B2B supply network. RFID reduces costly logistics mistakes such as sending an item to a wrong location or not dispatching the right product in time. This technology allows suppliers to precisely determine the exact location of a pallet, to track it’s alteration through the supply network, and develop imperative routing decisions. Readers situated in strategic points in a warehousing facility can be used to scan tags and automatically update inventory quantities as tagged pallets, or cases enter the facility. The received merchandise will be contrasted to the corresponding purchase orders identifying any disparities that may be present. Proctor & Gamble implemented an RFID application by VUE Technology and indicate that E-proof delivery demonstrates the potential to reduce the time and cost associated with discrepancies between what the Vendors actually ships and what the retailer claims it received. EPC tags placed on pallets and information relayed from readers to technology platforms for integration and relay to the retailers the products are being shipped to provide critical elucidation. P&G advance that their greatest sales lift, on average by 20 percent (Vue Technology, 2006), can be contributed to TrueVUE’s enablement of ensuring that the company is in stock, and deliveries are on time. This ability of RFID technology frees up manual labor involved in the quantity auditing and receiving processes, reducing or eliminating manual labor costs and also generates consistent consumer satisfaction as well as the development of a desirable relationship or dependency.

Proposition 4: RFID aids organizations meet customers’ unique expectations by enforcing proper product shipment, delivery dates and locality, while providing the ability to track and alter the products location or direction at any point in time.

Manufacturing Flow Management

Manufacturing flow management is concerned with determining and implementing manufacturing flexibility (Lambert et al., 2008) across a supply network. The management of manufacturing flexibility requires planning and execution beyond the walls of the manufacturer; to efficiently move products through plants, the operations of the firm and its suppliers should be pulled by demand. The degree of the manufacturing flexibility in a supply network can be leveraged or limited by the logistics capabilities of the firm, and those of suppliers and customers (Lambert et al., 2008). The implementation of RFID in manufacturing allows assembly line operations to become streamlined, reducing cycle time and increasing production throughput, the average amount of product processed within a particular time frame. In 2005 Boeing, an aeronautics manufacturing company began attaching RFID tags onto carts that hold parts and materials. Employees were required to transfer, unload, and manually enter the shipping/receiving data for parts and material shipments. With the deployment of RFID, Boeings’ labour requirements were dramatically reduced, shipment information related to products is more accurate and transmitted in seconds instead of hours, as well as inventory accuracy and visibility being dramatically improved (Industry Brief, 2007). Boeing was able to retain it’s investment in the technology in a matter of only 6 months, and claim that they will roll out the technology in additional manufacturing facilities. Enhancing production process automation and tracking capabilities with the implementation of RFID, product visibility and headway within the supply chain will augment. This process aids manufacturers with their just-in-time assembly lines; a strategy implemented to improve the
return on investment for an organization by reducing in-process inventory and its associated carrying costs. Parties involved in the supply network gain increased knowledge of the manufacturing capabilities within the network and are better positioned to identify, evaluate and propose inter-organizational coordination opportunities.

Proposition 5: At the Manufacturing level, RFID increases operational throughput efficiency, and with increased informational visibility, decreases excess in-process inventory, in turn reducing carrying costs as well as assembly cycle time.

Limitations of RFID

This innovative process driving technology is not without its limitations. RFID, a wireless technology, present some potential security issues to users when the communication between the tags and the reader is exposed to eavesdropping and traffic analysis. Data may become compromised during wireless transmission, as external entities may have read access to the tags or related databases with confidential data. Tag security is vulnerable because currently the data stored is plain text or unencrypted, addition of encryption requires more space on the tag that results in higher costs, increased processing time, and a larger chip; increasing the requirements for the actual size of the tag (Puffenbarger et al., 2008). RFID vendors have addressed some of these security issues through encrypting the actual data transfers, blocking data transmissions through jamming, and employing query protocols.

The main concern is that this new technology will lead to the tracking of consumers and possible exposure of private information (Puffenbarger et al., 2008). Privacy concerns surrounding RFID technology are vast, unauthorized persons can read RFID-tagged items from a safe distance, and most consumers are not aware of the tags or that the items are being tracked. Tags can potentially be used to identify unique individuals with the objects purchased; tracking goods at an item level, associating them with individuals, and then be able to automatically locate them in public places causes the most concern among privacy advocates.

Strategies are being formulated to protect consumer privacy, but there is a delicate balance between satisfying privacy right advocates and meeting the needs of the business world trying to benefit from RFID technology and its capabilities. EPC (Electronic product code) global has developed standards as a way of addressing public opposition of RFID privacy concerns; consumer notice, consumer choice, consumer education, and record use, retention, and security are included among these standards. The EPC global standards require that tags be equipped with at least one nullification function, kill functions and blocker tags are among these functions. Kill commands allow customers to request that RFID tags’ functionality be disabled after the consumer purchases a product and vacates the organizations location. Blocker tags prevent unwanted scanning of tags by passively jamming RFID readers; this method is discouraged because individuals often commit theft hiding products on hand as they leave the store, the readers will not identify that the product is unpaid for.

Another limitation in the acquisition of RFID technology implemented in an inter-organizational supply network is conflicting standards that may prohibit the deployment of the technology and abate anticipated effectiveness and efficiency across the network. There is a need to align the frequency usage of RFID so that the RFID system can interoperate in different countries (Soon and Gutiérrez, 2008) on a global scale. Organizations with supply chains extended into the global market may choose between standards and develop applications that may operate successfully under one standard but not that of another. The adoption of divergent RFID technologies undermines the interoperability of RFID and the software application tracking abilities along the chain. This may encourage countries to mandate adoption of particular standards, allowing international interoperability of tags and readers across a global B2B supply network, maintaining the perceived benefits of effectiveness and efficiency at the business process level. In summation, mandating the alignment of a global RFID technology standard is essential to
perpetuating international interoperability of RFID technology across an inter-organizational supply network.

Conclusion

The major push towards the adoption of RFID technology is evident by mandates announced by organization powerhouses for their largest suppliers, suggesting a dominant presence of this technology in the future on a global economic scale. This study is centered on the potential value that RFID creates, and its ability to increase effectiveness and efficiency across an inter-organizational B2B supply network. RFID adds unique value to each individual process that is involved in B2B commerce. Of the proposed benefits to the adoption of RFID technology, the most rudiment beneficial aspect of this technology is the visibility it offers. Enhanced visibility within a supply network, as well as accurate and timely acquisition of data, is fundamental to improving processes and imperative decision making. This aspect of the technology in turn leads to other functional betterments; reduction in inventory, increased productivity, cutting labor costs, even RFID investments have proven to increase the actual market value of the firm. There are however, included limitations to the technology; security, privacy and technological standards are among these identified in this paper.

Taking into account that the perceived benefits of this technology outweigh that of the limitations, organizational adoption of this technology will become globally accustomed for the impending future. Organizational success lies within the parameters of presenting solutions for the limitations of RFID. Also, satisfying the global standards of the technology is essential to become participants of this inter-operational technological market. In doing so, effectiveness, efficiency, and all of RFID’s perceived benefits and value may be realized across processes that are utilized in B2B commerce.
References

